January 31, 2011

Hepatitis C virus Resistance to Protease Inhibitors

Philippe Halfon a, Stephen Locarnini b

Received 13 December 2010; received in revised form 20 January 2011; accepted 20 January 2011. published online 31 January 2011.
Accepted Manuscript

Abstract

Recent advances in molecular biology have led to the development of novel small molecules that target specific viral proteins of the hepatitis C virus (HCV) life cycle. These drugs, collectively termed directly acting antivirals (DAA) against HCV, include a range of non-structural (NS) 3/NS4A protease, NS5B polymerase and NS5A inhibitors at various stages of clinical development. The rapid replication rate of HCV, along with the low fidelity of its polymerase, gives rise to the generation of mutations throughout the viral genome resulting in remarkable sequence variation in the HCV population, known as a quasispecies. The efficacy of DAAs is limited by the presence of these mutations resulting in amino-acid substitutions within the targeted proteins which affect viral sensitivity to these compounds. Thus, due to the high genetic variability of HCV, variants with reduced susceptibility to DAA can occur naturally even before treatment begins, but usually at low levels. Not surprisingly then, these changes are selected in patients either breaking through or not responding to potent DAA treatment. Six major position mutations in the NS3 HCV Protease (36, 54, 155, 156, 168, and 170) have now been reported in vitro or in vivo associated with different levels of resistance. The amino acid composition at several of the drug resistance sites can vary between the HCV genotypes/ subtypes, resulting in different consensus amino acids leading to a reduction in replicative fitness as well as reduced DAA sensitivity. Different amino acid diversity profiles for HCV genotypes/subtypes suggest differences in the position/ type of immune escape and drug resistance mutations. Also, different pathways of resistance profiles based on the chemical scaffold (linear or macrocyclic) of the protease inhibitors have been described. This review first describes how resistance to a protease inhibitor can develop and then provides an overview of the mechanism of how particular mutations confer varying levels of resistance to protease inhibitor, which have been identified and characterized using both genotypic and phenotypic tools. Future potential therapeutic strategies to assist patients who do develop resistance to protease inhibitors are also outlined. The challenge developing new HCV protease inhibitors should take in consideration not only the antiviral potency of the drugs, the occurrence and importance of side effects, the frequency of oral administration, but also the resistance profiles of these agents

a Virological Departement Laboratoire Alphabio, Hôpital Ambroise Paré, Marseille, France
b Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia

PII: S0168-8278(11)00079-1
doi:10.1016/j.jhep.2011.01.011
© 2011 Published by Elsevier Inc.

Source

No comments:

Post a Comment